D-Sonic peak current output compared to other


Hello,
I read this review on 6moons website about the D-Sonic M2-1500M amplifier and I think it is a very interesting amplifier. However, I am wondering about the "Peak Current Output" spec (30A) according to D-Sonic website, because I've read regarding the Current Headroom at Spectron , where it is said that those can deliver peak currents of 65 amps...
I'm very interested to read your thoughts about that.
cjug
Let's do the math!

We have three values mentioned so far. 30A, 45A and 65Amps.

Exactly what does that mean? I suspect it is not having anything to do with the power output of the amp. Let's see if I am correct.

The power formula is P=Isquared x R. P is Power, I is current and R is the load of the speaker.

Let's assume that the speaker is one ohm, which it isn't in most cases, but one ohm means that the power is equal to the current squared; 30 amps is thus 900 watts, 45 is 2025 and 65 is 4225.

If the speaker is 4 ohms the power level becomes 2700 watts, 8100 and 16,900 watts respectively.

Do any of these amps make power like that into 4 ohms? No? (sorry to be a bit flippant, but this is an often misunderstood spec).

The actual spec is the amount of current measured when the power supply is shorted out for 10 milliseconds.

By that measure, our MA-2, a 220-watt tube amp, has as much current as the most powerful amp mentioned on the is list so far. But its really the amount of *power* that the amp can make into the speaker load that is important.

The current spec is really a measure of the size of the pool of electrons that feeds the amp. But the amp is a bottleneck for that pool. It has been shown that amps with more power supply reserve do sound better- this is often simply because you get less IM distortion.

One other bit of math. Let's say the speaker is being fed 400 watts. What is the current? If a 4-ohm speaker, the current is 400=Isquared x 4. Solving for current we get 100, taking the square root we get 10. Ten amps is all that is needed to drive a 4 ohm speaker with 400 watts. Note: it does not matter what kind of amp is used, if its 4 ohms and 400 watts the current will always be 10 amps.

Amplifier manufacturers like to use that current figure to inflate the idea that their amp is more 'brutal' or something, I hope this rather simple math allows you to see what is really going on.

There is an interesting reading in Magnepan's website regarding amplifiers current output.

Link:
http://www.magnepan.com/faq#receivers

Quote:
"What is the best amplifier for Magneplanars? [top]

Some individuals assume we won't make product or amplifier recommendations for "political" reasons. Not true. We CAN'T make specific recommendations because WE DON'T KNOW. It is too much work to keep up with changing models and the vast number of products. As it is, our small staff is not getting all of our work done. However, the following guidelines will be helpful. Class A/B amplifier designs that come close to doubling power at 4 ohms have a long and successful track record.

There are 2 features or aspects of a receiver or amplifier that will enhance your music or experience-- High current power supplies (ability to drive 4 ohm loads) and adjustable crossover points in the bass management menu for home-theater.

The most common question is about the amount of recommended power for Magneplanars, but, first, it is important to understand the role of current and the power supply. High current and the capability of the power supply is a good indicator of the QUALITY of the amplifier. The amount of power you will need is a matter of QUANTITY. High current and total power are two separate issues.

The power supply is "what separates the men from the boys." A receiver is very efficient and cost-effective way to get is all in one package, but there are "issues". Unfortunately, consumers want all the "bells and whistles" without understanding the importance of power supply. Many manufacturers offer the "bells and whistles", but, compromise the power supply to be price competitive. There are a few manufacturers that are the exception.

Everyone understands they need plenty of power, but the role of power supply is not understood. There is one important concept you need to understand when shopping for an amplifier or receiver---and it is somewhat like understanding "good" and "bad" cholesterol. The ratio is very important. An Gold Standard for an amplifier would be to double the power at 4 ohms. This concept is important even if you are buying an 8 ohm speaker. If the amplifier is rated at 80 watts at 8 ohms, it should (ideally) produce 160 watts at 4 ohms (or close to it). None of the receivers will do that. However, this is the benchmark of a good amplifier design. A 10 watt amplifier that produces 20 watts at 4 ohms "speaks volumes" about the PHILOSOPHY of the designer. (But, of course, it does not tell you if a 10 watt amplifier is enough for your room.)

A good receiver might produce 30-40% more power at 4 ohms. Most receiver manufacturers don't want to talk about 4 ohm ratings because they have cut the "guts" out of their products to keep the cost down. Some receivers produce the same power at 4 ohms as the 8 ohm ratings. Or they use a switch on the back for 4 ohms to reduce the power and to prevent the receiver from self destructing. Others warn against 4 ohm speakers. Regardless of what speaker you buy, we don't recommend any of these receivers. There are a few manufacturers making receivers with good 4 ohm capability. But, we can't keep up with who's doing what. All you have to remember is to ask-- "What is the 4 ohm power rating?" If the 4 ohm rating isn't available, find another model or brand. It may take some digging to find the 4 ohm rating, but there are a number of receivers on the market that are rated for 4 ohms. For example, the THX rating requires that the amplifier section must be able to drive 4 ohms continuously. Even an inexpensive receiver like the 50 watt NAD C725 BEE (suggested retail of $799) is advertised to be stable with impedances down to 1 ohm and has peak power of 200 watts. So, don't be fooled by pretty front panels. Its what is on the inside that counts.

A new type of amplifier (Class D) has become more popular because it is a "green" design and uses less power plus it is smaller in size compared to conventional amplifier designs. We have heard reports of Class D amplifiers shutting down when driving 4 ohm loads or sound quality that is less-than-desirable. Some, more recent designs are much better. Because we do not have the time to determine which models of Class D designs are compatible with Maggies, we must take a conservative approach. Class A/B designs with high current capability have proven a good choice for many decades.

Adjustable crossover points- If you are shopping for a receiver or processor, you will want a model with adjustable crossover points for "small" speakers in the bass management menu. This is very important to the design of a Magneplanar home-theater system. Adjustable crossover points up to 250 Hz are desirable.

Most ribbon or electrostatic center channel speakers incorporate a dynamic midbass driver since the rather small ribbon or electrostatic elements can not produce midbass. This seems like a mistake to us. The does approximately 60% of the "heavy lifting" for movies. Why compromise such a critical ribbon speaker with a dynamic woofer?

Magneplanar center channel speakers are also small (relative to our full range models) and cannot produce adequate midbass-- by themselves. Our strategy is to utilize the front left/right Magneplanars (or one of the new Magneplanar Woofers) to produce the center channel midbass/bass. When optimally setup, the illusion is of a big Maggie in the middle. However, it requires one of several solutions for getting center channel midbass/bass. Adjustable crossover points in the bass management menu is one of the easiest solutions. If your receiver or processor only has an 80 Hz crossover point for "small" center channel, there are other options. Please call us and we will be happy to discuss your installation requirements."

The above quote is from Magnapan's website.


This is a video explaining why current output is so important in audio playback:
http://www.youtube.com/watch?v=Y_22XOakyxM&feature=player_embedded
Not sure I buy the explanation in the video. It needs elaboration to know what he is trying to say.