Tim & Erik, thanks for the excellent info and the informative link, which I’m still going through.
Kalali, first, although the term "impedance" is commonly used to simply refer to a number of ohms, to be precise a speaker’s impedance is a vector quantity, meaning that it is comprised of both a magnitude (the quantity that is measured in ohms) and a phase angle (measured in degrees). If the impedance is purely resistive at a given frequency the phase angle will be 0 degrees at that frequency; if it is purely inductive (hypothetically speaking; no speaker will have an impedance that is even close to being purely inductive at any audible frequency, or it would not be able to consume any power at that frequency) the phase angle will be +90 degrees; if it is purely capacitive (again, hypothetically speaking) the phase angle will be -90 degrees.
Also, as has been mentioned above, the phase angle of the impedance describes the amount by which voltage leads current (in the case of a positive/inductive phase angle) or voltage lags current (in the case of a negative/capacitive phase angle), at a particular frequency.
But to address your question, I suggest that you take a look at this thread. The entire thread is well worth reading, but note especially the latter part of Atmasphere’s post dated 1-9-2017 (beginning with "I feel like several points need clarification ..."). The short answer is that sound quality **does not** benefit from low impedance design, but other factors such as cost and marketability may. With those factors deriving in part from the fact that solid state amps can supply more power into low impedances (up to a point, of course) than into high impedances. The background and previous experience of the particular designer, and the kinds of designs he or she is most familiar with, also seem likely to be factors in many cases.
Best regards,
-- Al
Kalali, first, although the term "impedance" is commonly used to simply refer to a number of ohms, to be precise a speaker’s impedance is a vector quantity, meaning that it is comprised of both a magnitude (the quantity that is measured in ohms) and a phase angle (measured in degrees). If the impedance is purely resistive at a given frequency the phase angle will be 0 degrees at that frequency; if it is purely inductive (hypothetically speaking; no speaker will have an impedance that is even close to being purely inductive at any audible frequency, or it would not be able to consume any power at that frequency) the phase angle will be +90 degrees; if it is purely capacitive (again, hypothetically speaking) the phase angle will be -90 degrees.
Also, as has been mentioned above, the phase angle of the impedance describes the amount by which voltage leads current (in the case of a positive/inductive phase angle) or voltage lags current (in the case of a negative/capacitive phase angle), at a particular frequency.
But to address your question, I suggest that you take a look at this thread. The entire thread is well worth reading, but note especially the latter part of Atmasphere’s post dated 1-9-2017 (beginning with "I feel like several points need clarification ..."). The short answer is that sound quality **does not** benefit from low impedance design, but other factors such as cost and marketability may. With those factors deriving in part from the fact that solid state amps can supply more power into low impedances (up to a point, of course) than into high impedances. The background and previous experience of the particular designer, and the kinds of designs he or she is most familiar with, also seem likely to be factors in many cases.
Best regards,
-- Al