Focus on 24/192 Misguided?.....


As I've upgraded by digital front end over the last few years, like most people I've been focused on 24/192 and related 'hi rez' digital playback and music to get the most from my system. However, I read this pretty thought provoking article on why this may be a very bad idea:
http://people.xiph.org/~xiphmont/demo/neil-young.html

Maybe it's best to just focus on as good a redbook solution as you can, although there seem to be some merits to SACD, if for nothing else the attention to recording quality.
128x128outlier
On the question of continuous vs. non-continuous waveforms, I think that part of the reason for the disagreement is that the word "continuous" is misleading in this context. No waveform is truly "continuous." Regardless of the nature of the waveform, the Sampling Theorem will only be perfectly accurate (i.e., to 100.00000000...%) when an infinitely long sample record is available, covering the period from the beginning of the universe to the end of time. :-)

Any real-world waveform, whether sinusoidal or not, and "continuous" or not, will not meet that criterion. As a result there will always be some non-zero loss of information, at and near the times when the waveform begins, when it ends, and when it changes character. In theory the spectral content of those transitions extends out to infinity Hertz, although as a practical matter much of the high frequency spectral content of those transitions will be at amplitudes that are utterly negligible.

The information that is lost in those transitions will correspond to the spectral components that lie above the cutoff point of the anti-aliasing filter. The lower the cutoff point of the anti-aliasing filter, and the more abrupt the transitions are in the waveform that is being sampled, the greater the amount of information that will be lost.

Will any of that particular form of information loss be audibly significant when a music waveform is sampled at 44.1 kHz? It's hard to say, and I doubt that empirical assessment (by listening) can yield a meaningful answer considering how many other variables and unknowns are involved in the recording and playback processes. My guess is that it probably has some significance, especially on high frequency transients such as cymbal crashes, but only to a relatively small degree.

Is oversampling plus noise shaping an essentially perfect means of overcoming the problems inherent in sampling just slightly above the Nyquist rate, as the article seems to suggest? It's probably fair to say that it can work pretty well, but IMO it would be hard to argue that it is "essentially perfect." Can the ultrasonic frequency content that is retained by hi rez formats have adverse consequences, as claimed in the article, as a result of intermodulation effects within the system's electronics, or things like crosstalk effects for that matter? It certainly seems conceivable, to a greater or lesser extent depending on the particular components that are in the system. Will sampling at a higher rate result in sampling that is less accurate, assuming equal cost and comparable design quality? That would seem to be a reasonable expectation. But complex and sophisticated digital signal processing does not come for free either.

What does it all add up to? I would have to say that the paper referenced by the OP, and also the Lavry paper, make better cases against hi rez than I would have anticipated, but they are certainly not conclusive as I see it. And given the many tradeoffs and dependencies that are involved, my suspicion is that there will ultimately be no one answer that is inarguably correct.

Best regards,
-- Al
Al, What sounds inconceivable to me is that 24/192 recording supposed to gain sound quality by downsampling it to 16/44 to be upsampled again, perhaps to the same 24/192. Am I reading it right? Is downsampling + upsampling somehow improving sound by replacing real samples with artificial interpolated samples and recreating same harmful 192kHz?
Hi Kijanki,

The only reference to downsampling + upsampling that I recall seeing was in the paragraph headed "clipping" in the lower third of the page, and in footnote 21. He was saying that by taking 192 kHz source material, downsampling it, and then upsampling back to 192 kHz, a sonic comparison could be made between the two 192 kHz signals that would be indicative of the adequacy of the lower sample rate.

Not sure if that is what you are referring to. But in any event the methodology he is describing doesn't make sense to me, because the comparison would not reflect the effects of the sharper anti-aliasing and reconstruction filters that would be required for recording and playback at the lower sample rate.

Best regards,
-- Al
Al, On one hand he has whole chapter titled "192kHz considered harmful" describing harm that 192kHz can do to amplifiers and speakers to later say this about oversampling:

"This means we can use low rate 44.1kHz or 48kHz audio with all the fidelity benefits of 192kHz or higher sampling (smooth frequency response, low aliasing) and none of the drawbacks (ultrasonics that cause intermodulation distortion, wasted space)."

According to above when DAC is exposed to 192kHz sample rate from CD it is harmful to all analog circuitry afterwards (including power amp and speaker) but when DAC upsamples redbook CD (24/192 downmixed to 16/44), the same 24/192 becomes benign. In either case DAC outputs samples at 192kHz rate but in one case it is less harmful to analog circuitry?
Ok, I see what you are referring to. Note this statement:
Oversampling is simple and clever. You may recall from my A Digital Media Primer for Geeks that high sampling rates provide a great deal more space between the highest frequency audio we care about (20kHz) and the Nyquist frequency (half the sampling rate). This allows for simpler, smoother, more reliable analog anti-aliasing filters, and thus higher fidelity. This extra space between is [sic] 20kHz and the Nyquist frequency is essentially just spectral padding for the analog filter.

Because digital filters have few of the practical limitations of an analog filter, we can complete the anti-aliasing process with greater efficiency and precision digitally. The very high rate raw digital signal passes through a digital anti-aliasing filter, which has no trouble fitting a transition band into a tight space. After this further digital anti-aliasing, the extra padding samples are simply thrown away. Oversampled playback approximately works in reverse.
So what distinguishes the two situations you are referring to is that the 192 kHz hi rez format will presumably include a significant amount of ultrasonic audio information, which is what he is saying might have harmful consequences as a result of intermodulation effects in downstream components, while the oversampled redbook data will not include that information, and therefore those effects will not occur.

Best regards,
-- Al