Why are most High End Amps class A


Hello, new here and wondering.

I've recently been looking and reading at Audiogon and see that most "High End Amps" are class A. Currently I own a McIntosh C28 preamp and MC2105 amp. To me they sound fabulous.

Would a "High End" class A sound any better?

Of course I realize that there are very expensive class A's that would blow away my Mac's, but what about say a used class A in the $ 1000.00 to $2000.00 price range?

Thank you so much for your input!
gp_phan
My hunch is Kirkus is probably right. In practically all Audiogon discussions to bridge tube and SS amplifiers, Pass Lab is mentioned. I know the XA.5 delivers just what people have talked about, but they are expensive. It thus leaves the question as to what it takes in order to lower pricing. I do know of Clayton as well and have listened to the better Clayton amps. They are nice sounding, but they are not cheap either.

Your system sound is determined by the weakest link in your system, right down to interconnects, cables, electrical and vibrational isolators. There is no question that the real McCoy Class A amplifier design is that good. So if you really want what Class A design can deliver, with some give and take and some negotiation with somewhat better than your price target, it might require smaller speakers and not so loud listening with the music taste that does not demand floor jarring bass. It really is a compromise at this price range or about.
but it's Achilles heel is not that it's Class B . . . but it has a quasi-complementary (all-NPN) output stage. The reason for this is that when these amplifiers were designed (in the late-1960s), complementary NPN/PNP power transistor pairs simply didn't exist. What this means is that in your amplifier, the basic linearity of the output stage around the crossover area is quite poor.
Kirkus, I'm having a very hard understanding why an all-NPN output stage is very non-linear at the x-over point. Please explain. Thanks.

In addition, the driver stage is really primitive, with simple resistor networks setting the current through the input differential-amp.
There doesn't seem to be anything primitive about this input stage except that it is (very) low gain since resistors are used as the load to input differential pair.

I think a good upgrade for you might be to get a later McIntosh amp, from at least the MC2255-era (early-1980s) or later. By this time, they were using fully-complementary output stages, input stages with current-sources and current-mirrors, and voltage amplifiers with an active load -- meaning they're an order of magnitude more linear.
Kirkus, what do you mean by "linear"? And, how do "input stages with current-sources and current-mirrors, and voltage amplifiers with an active load" make the power amp more "linear"?
Thanks in advance for the insights!
Kirkus, I'm having a very hard understanding why an all-NPN output stage is very non-linear at the x-over point. Please explain. Thanks.
In a typical all-NPN output stage, the drivers are complementary (NPN/PNP), but the outputs are not (NPN/NPN). In order to make the bias voltages work out, the transistors are connected in such a way so that for the positive pair, there are actually two local feedback loops - one around the driver, and one around the output transistor. But for the negative side, the driver and output are in a single local feedback loop together. This means that in the crossover region, there is an abrupt change in the static gain as the current is transferred from one half of the output stage to the other.

If you ever play around with adjusting the bias on such an output stage (I've actually modded many MC2105s to have adjustable bias), it can be easily seen that as the operating point is shifted, the crossover distortion never goes away, it simply changes shape a bit.

There doesn't seem to be anything primitive about this input stage except that it is (very) low gain since resistors are used as the load to input differential pair.
The following voltage amp is a transresistance amplifier (current in, voltage out) - meaning that the signal doesn't appear as a voltage on the collector of the diff-amp transistor that drives it . . . rather, it's a current. So in the diff-amp, it's the transconductance (set by the transistors' beta and their emitter resistors) that determines its open-loop gain.
And, how do "input stages with current-sources and current-mirrors, and voltage amplifiers with an active load" make the power amp more "linear"?
Using a current source to supply the diff-amp tail current effectively "makes the tail longer", and eliminates the variation in tail current with common-mode voltage. Also, the performance of any diff-amp is VERY dependent on the static balance of current between the two transistors (or tubes) . . . and with resistors setting the current, this critical balance is affected by tolerances in the (carbon!) resistors, and variations in beta and Vbe in the (old!) input transistors themselves, and also the line voltage when using an unregulated supply (as is almost always the case). Using an active current mirror, instead of the resistors, forces the static currents to remain balanced regardless of these variations.

As far as the active load on the voltage amp - the improvement is the same as for any traditional single-ended collector/plate-loaded voltage amp -- that is, by keeping the quescient current constant across the required voltage swing, the amplifier is more linear. And here is one place where increasing the impedance on the collector does indeed increase open-loop gain, which also reduces distortion.

All of this makes the amplifier much more linear in the traditional sense -- its transfer function. And if you ever compare a MC2105 to a MC2255 (an old amp, but which has these refinements) on the test bench - they are worlds apart in the amount of distortion they produce . . . especially in the higher harmonics.