Every step up in xover order shifts the phase between tweeter and woofer by an additional 90deg. This means for maximum phase-coherence the obvious choices are second order (180deg shift so you just invert the connections to one driver to get it all back in phase) or fourth order (360deg shift: back in phase but not in time, a simple delay circuit will fix this). The ones to avoid are first and third order as a 90deg (270 for the third order) is very dificult to fix.
One advantage of a first order xover is a small number of parts which results in a very good transient response. The other is their immunity to electrical resonance ("ringing"). The higher the order the xover the easier it is to induce resonance with a high enough power input. When such a filter resonates it actually turns into a sinewave generator and produces an output at the xover frequency! Almost all analog synthsizers use this effect very succesfully but you don't really want that happening in your speakers, to this end most higher order xovers contain a damping circuit to avoid this.
The only truly phase-coherent dynamic multiway speaker in existence (Tannoy DualConcentric) uses a second order xover and inverts the tweeter.
It is phase-coherent to within 18deg. The only way to get better than that is a full-range driver, be it dynamic or planar. The result of this is a stereo image
that is far more precise than any other dynamic speaker I have ever heard.
And, being a true point source, you are always in the sweet spot as long as you are somewhere between the speakers and, where ever you are in the room, the sound never changes! After having spent a fair bit of time in recording studios I can say I have never heard a speaker as close to the real thing as a Tannoy! None, at all. Electrostats have better micro resolution and a Klipshorn better dynamics but, apart from those and overall, theres just nothing that comes even close. I put this down to phase-coherence and the point source characteristic. There is also a marked difference if I invert the connection (on both speakers at the same time): the stereo image pretty much collapses ie it goes flat in depth and height and the bass goes soft.
With other speakers I've never heard a difference.
One advantage of a first order xover is a small number of parts which results in a very good transient response. The other is their immunity to electrical resonance ("ringing"). The higher the order the xover the easier it is to induce resonance with a high enough power input. When such a filter resonates it actually turns into a sinewave generator and produces an output at the xover frequency! Almost all analog synthsizers use this effect very succesfully but you don't really want that happening in your speakers, to this end most higher order xovers contain a damping circuit to avoid this.
The only truly phase-coherent dynamic multiway speaker in existence (Tannoy DualConcentric) uses a second order xover and inverts the tweeter.
It is phase-coherent to within 18deg. The only way to get better than that is a full-range driver, be it dynamic or planar. The result of this is a stereo image
that is far more precise than any other dynamic speaker I have ever heard.
And, being a true point source, you are always in the sweet spot as long as you are somewhere between the speakers and, where ever you are in the room, the sound never changes! After having spent a fair bit of time in recording studios I can say I have never heard a speaker as close to the real thing as a Tannoy! None, at all. Electrostats have better micro resolution and a Klipshorn better dynamics but, apart from those and overall, theres just nothing that comes even close. I put this down to phase-coherence and the point source characteristic. There is also a marked difference if I invert the connection (on both speakers at the same time): the stereo image pretty much collapses ie it goes flat in depth and height and the bass goes soft.
With other speakers I've never heard a difference.

