Do equipment stands have an impact on electronics?


Mechanical grounding or isolation from vibration has been a hot topic as of late.  Many know from experience that footers, stands and other vibration technologies impact things that vibrate a lot like speakers, subs or even listening rooms (my recent experience with an "Energy room").  The question is does it have merit when it comes to electronics and if so why?  Are there plausible explanations for their effect on electronics or suggested measurement paradigms to document such an effect?
agear
"I’ll be glad to hear how you would test yourself!"

Maybe a misrouted-post intended instead for the infectious disease center, Ethan?

Dave
Perhaps it might help to know that in the last ten years, Dr. Herbert Melcher has shown that the human ear/brain system has tipping points. An example of that is if the playback has insufficient speed (risetime) the brain has a tipping point where the music processing is transferred from the limbic centers to the cerebral cortex.
Reference, and how did he discern such a transference? PET scan? I am in medicine, and no Neurologist (or neuroscientist) has such specificity at their fingertips. They are only making assumptions based on observed brain activity.

Another example of a tipping point is where the brain will favor distortion as tonality over actual FR errors! Now both of these things were not known back in the 1970s and are examples of ’now that we know that, we can do proper engineering to take them into account.’

Again, we need a reference. Makes for good audio prose and ideology but there is no data.

It does matter that our ears are tuned to bird song frequencies (IOW Fletcher-Munson); this is the result of evolution as birds are the early warning system of the presence of a predator in the environment. You can regard this extra sensitivity as a complication!

purely speculative.

seventh harmonic causing a metallic quality: I’ve heard that several places, but in this case the easiest to remember is John Curl (one of the top solid state designers alive today).
https://www.youtube.com/watch?v=fZwS-oyqc3w
Again, no data.  I guess we need to find that "big red book."


Someone posted,

"Perhaps it might help to know that in the last ten years, Dr. Herbert Melcher has shown that the human ear/brain system has tipping points. An example of that is if the playback has insufficient speed (risetime) the brain has a tipping point where the music processing is transferred from the limbic centers to the cerebral cortex."

That wouldn’t be THE Dr. Hebert Melcher, would it? 😬

When he he says the human ear/brain has tipping points is that anything like tipping over a cow? No one seems to understand how hearing works, and I’m not talking about the inner ear, the neurons or the transmitters or the cerebral cortex. Give me a break! It’s that way of thinking that’s SO wrong-headed and just plain dumb. I’m quite sure if there is someone out there who does understand how we hear it most likely ain’t Dr. Herbert Besides just to clarify my position if you can't hear or aren't sure what you're even listing to all the measurements and high faluting "scientific" explanations won't help. You're up the creek without a paddle.



@agear regarding the 7th harmonic. Two minutes on google will turn up ample references from piano tuning, design of wind instruments and so on. Here’s a basic one to get you started

http://hyperphysics.phy-astr.gsu.edu/hbase/Music/harmon.html#c1

Ralph, this is very simple, and you have danced around it repeatedly:

If the "digital" artifacts you refer to are loud enough to be audible, then how come they don't show up in a standard FFT measurement? Or in a standard THD test that nulls the test frequency and leaves everything else. You already agreed that stuff 40-80 dB down is too soft to hear when it starts and stops in my Artifact Audibility test, so by extension it's too soft to influence "tonality" either. Aliasing, and all the other bugaboos you talk about, are 100+ dB down. And so they are inaudible. This is very simple audio basics, and clearly the burden of proof is on you to prove otherwise. Since you still haven't described a test you're willing to take that will let you prove your beliefs, it's clear that you're unable to do so.

Here's direct question I hope you'll answer: Since you are unable to prove your beliefs, I can only assume you haven't proven them to yourself either. So doesn't it make sense for you to do some experiments, so you will know that your beliefs are valid? I'll be glad to hear how you would test yourself!

Actuallly Ethan we must be talking past each other. I feel also that you've not been addressing my points, and when I stated that you didn't seem to understand, you objected but nothing happened. I've answered your question in the second paragraph about 5 times now! So I have to assume that my assertion was correct- you really don't get it! Let's start with this one:

you already agreed that stuff 40-80 dB down is too soft to hear when it starts and stops in my Artifact Audibility test, so by extension it's too soft to influence "tonality" either.
This statement is false and describes a basic misunderstanding of how distortion interacts with the ear (much of which has been known since the 1930s). Because of the masking principle, louder sounds make it difficult or impossible to hear quieter sounds. But distortion is different from sounds buried in the mix. In a way it rides on top of everything else and so is **always** audible. Again, this understanding has been with us since the 1930s. The way you seem to be looking at it is that somehow distortion gets buried under that rest of the signal, especially if its a loud one. If that were true we would not need to bother with the distortion spec of an amplifier at full power as it would be irrelevant! Clearly it is not.
Since you still haven't described a test you're willing to take that will let you prove your beliefs, it's clear that you're unable to do so.
I've described a test at least three times now. Please go back and reread my comments.

Here's direct question I hope you'll answer: Since you are unable to prove your beliefs, I can only assume you haven't proven them to yourself either. So doesn't it make sense for you to do some experiments, so you will know that your beliefs are valid? I'll be glad to hear how you would test yourself!
This paragraph opens with a false assumption. When I first read the results of the GE study (mid 1960s) I set up some simple test equipment and was able to show easily that the ear is indeed far more sensitive to higher ordered harmonics. That and that they are unpleasant to the ear is no surprise- just listen to a square wave sometime.  Actually Ethan when it comes to challenging each other like this, I've seen occasions where you did not have measurements at your disposal (ex.: power cords) so I think its a little odd that you think I might not have sorted this stuff out for myself.  I suggest that you start by obtaining some documents and read them- the writings of Norman Crowhurst are immensely beneficial; if you're serious many of them can be downloaded from Pete Millet's website. Another nice tome to have on hand is the Radiotron Designer's Handbook (John Curl refers to it in the YT link I dropped earlier).

Its not peculiar that I think that the ear converts distortion into tonality **as you are suggesting** with the use of the word 'beliefs'. I've seen this before in skoftics (a term describing a person that seems skeptical, but when confronted will not examine the evidence as their position is based on belief and changing that belief is anathema to them), where they go so far as to contradict themselves as you are here in an attempt to make the other person in the conversation wrong.

By that I am pointing out that you admitted easily that a 2nd harmonic is easily audible as 'warmth'. So you allow for that, but you don't allow that other harmonics to which the ear is **far** more sensitive, can't be heard because they are at a lower level?

I have maintained that understanding of the physiology of how we perceive sound (in a nutshell, the rules of human hearing) is essential to progress in audio and is the arena of continuing advance in our field. From my perspective, your understanding of those rules seems stuck about the 1970s or so. A lot's gone down in the research of human physiology since then; if you were up on it we would not be having this conversation!

FWIW, two of the greatest solid state designers of our time are- John Curl and Nelson Pass. It should come as no surprise that they are responsible for some of the best-sounding solid state amps made.