connect 2 different wire gauge to pos and neg speaker terminal


what happens if say Kimber kable 12 tc to pos and lowes 10 gauge grounding wire to neg side or 12 tc biwire  to pos and lamp cord to neg
chalmersiv
Thanks, Kijanki. Yes, that explains it pretty well. Although I can see how that statement could be misinterpreted. The reference to "in one direction" should say something like "in one direction for a given direction of the electric field," the direction of the electric field of course alternating every half-cycle in the case of AC. Also, the reference to "average velocity" is a bit misleading, because it could be interpreted as meaning that the much faster Fermi velocity of 1570 kilometers/second or so is numerically averaged in, even though (as I mentioned earlier) it cancels out of the average (the "net flow") since it is in random directions.

Best regards,
-- Al

Post removed 
Allow me to summarize. It doesn’t really matter what the velocity of electrons is since they are only the charge carriers. It doesn’t really matter what direction electrons are traveling since they’re only the charge carriers. And compared to the velocity of the EM - even if one considered electrons were moving at Fermi velocity - the relative velocity of electrons is negligible. Recall that the velocity of light (photons) is constant even if it’s measured from a rapidly moving rocket ship. 🚀
Al (almarg),


  1. What is the stuff that flows through a light bulb and comes back out again through the other wire?
The answer to question #1 is ELECTRIC CHARGE. Charge is a "stuff" that flows through lightbulbs, and it flows around a circuit. Normally no charge is lost during the operation of a circuit, and no charge is gained. Also, charge flows very slowly, and it can even stop flowing and just sit there inside the wires. In an AC circuit, charge does not flow forwards at all, instead it sits in one place and wiggles forwards and back.
http://amasci.com/elect/elefaq1.html#aelist
Is this guy wrong?

regards,
Jim
Hi Jim,

As often occurs when this kind of subject comes up, ambiguity and/or imprecise use of terminology muddles the issue. If you replace his use of the word "charge" with the words "charge carrier," I think what he says then becomes pretty much correct.

As explained by Kijanki with the balls in a tube analogy, and as alluded to in my long post in this thread dated 8-23-2017 at 7:08 p.m. EDT (although what I said in that post was stated in terms signal energy rather than charge), charge propagates at near light speed, while charge carriers (electrons, in the case of a metallic conductor) move very slowly. And current, defined in terms of amperes, is proportional to the average number of charge carriers traversing a given cross-section of the conductor per unit time.

Best regards,
-- Al