For both transformers and autoformers, softer on dips and louder on peaks, ***relative to the response that the particular speaker would provide if the amp were an ideal voltage source, meaning a voltage source having an output impedance of zero.*** However in the case of an autoformer (which would be used in a solid state design) the differences will be extremely small, and essentially negligible with most speakers. Not because of the difference between an autoformer and a transformer, but because of the differences in output impedance between tube amps and nearly all solid state amps. As I said in my post dated 8-16-2018:
-- Al
A major factor contributing to this, and what is probably the most major factor in many cases, is not the output transformer itself, but the interaction of the output impedance of a tube amp with the speaker impedance variations that you are referring to. In contrast to nearly all solid state amps, most tube amps have output impedances that are a significant fraction of speaker impedance, usually somewhere between a large fraction of an ohm and several ohms. That in turn causes the voltage divider effect to have significant effects on tonality, to the extent that the speaker’s impedance varies as a function of frequency.Regards,
In the case of McIntosh solid state amps which use autoformers that particular effect is essentially negligible with most speakers, because as a consequence of being solid state their output impedance is much smaller than the output impedance of most tube amps. (Although that certainly does not mean that an amplifier having low output impedance is necessarily the best match for a given speaker, in terms of tonality). For example the MC302 has a specified damping factor of "greater than 40," which for the 8 ohm tap theoretically corresponds to an output impedance of less than 8/40 = 0.2 ohms.
-- Al

