An 18 gauge copper wire has .0209 ohms of resistance per meter. That means carbon at 867 times more is 18 ohms. Using a larger cross section of carbon would reduce this even further. A 10 guage carbon fiber would be 2.6 ohms/m. I don't know what the diameter of the fibers in this cable is, but is 18 ohms detrimental to the sound? A better question may be would the advantages outweigh whatever disadvantages there may be? I don't know, but 18 ohms is certainly much, much lower than the 25K to 100K input impedance of a typical component. It is about .2% of even an unusually low 10K input impedance.
The source wouldn't see a greater load. Actually the opposite. The resistance would be in series with the output so you would have to turn up the volume a bit (a fraction of a percent) to get the same voltage level delivered to the load, but it would still draw the same current.
Sean, you make the claim that it is a big waste with no benefits. If you go to his website he claims that there are significant benefits, and unless my math is wrong there is very little waste.
The bottom line is: does it sound better? I really don't know the answer to this since I've never heard the Wolff cables. I am simply challenging the assumption that a few ohms of resistance is a bad thing. Of course if it gets too high then that could be an issue, but what is too high?
Here is a quote from the Audience website with a their take on cable resistance. I am presently using Audience cables and think they are very good, especially for the money.
"There is a common misconception that loudspeaker cable must be large in diameter and have a low DC resistance in order to provide good bass response. DC resistance is relatively unimportant. What really matters is the characteristic impedance (AC resistance) of the cable. Music is an AC signal after all. Most of these large diameter/low DC resistance cables have excessively high characteristic impedance anywhere from 100 to 600 ohms with some measuring in the 1000s of ohms. The Au24 Loudspeaker Cable is only 4mm or 1/8" in diameter. Although the DC resistance may be slightly higher than the garden hose variety speaker cables the characteristic impedance is only 16 ohms. Musical signals from the bass to the overtones pass through this cable with less actual impedance than a cable with a lower DC resistance."
The source wouldn't see a greater load. Actually the opposite. The resistance would be in series with the output so you would have to turn up the volume a bit (a fraction of a percent) to get the same voltage level delivered to the load, but it would still draw the same current.
Sean, you make the claim that it is a big waste with no benefits. If you go to his website he claims that there are significant benefits, and unless my math is wrong there is very little waste.
The bottom line is: does it sound better? I really don't know the answer to this since I've never heard the Wolff cables. I am simply challenging the assumption that a few ohms of resistance is a bad thing. Of course if it gets too high then that could be an issue, but what is too high?
Here is a quote from the Audience website with a their take on cable resistance. I am presently using Audience cables and think they are very good, especially for the money.
"There is a common misconception that loudspeaker cable must be large in diameter and have a low DC resistance in order to provide good bass response. DC resistance is relatively unimportant. What really matters is the characteristic impedance (AC resistance) of the cable. Music is an AC signal after all. Most of these large diameter/low DC resistance cables have excessively high characteristic impedance anywhere from 100 to 600 ohms with some measuring in the 1000s of ohms. The Au24 Loudspeaker Cable is only 4mm or 1/8" in diameter. Although the DC resistance may be slightly higher than the garden hose variety speaker cables the characteristic impedance is only 16 ohms. Musical signals from the bass to the overtones pass through this cable with less actual impedance than a cable with a lower DC resistance."

