Please explain amplifier output impedance


I have recently read a few loudspeaker reviews which mention that the speakers would likely work best with low output impedance (or high output impedance) amplifiers.

So, what measurement defines low output impedance (or high output impedance) on an amplifier? What's the numerical value of low and high output impedance, and what is "average"?

Also, what specification of a loudspeaker provides info that would indicate using an amplifier with particular output impedance?

Thanks in advance for explaining this in laymen’s terms. :)
tvad
Sean, I recently spent several weeks designing two loudspeakers specifically to work well with high output impedance tube amps. I wanted them to also work well with low output impedance solid state amps, though that was a secondary priority.

Getting the speakers to work well with a high output impedance amp was not difficult as long as I kept the speaker's input impedance about 15% higher than the amplifier's output impedance. Now granted a higher impedance speaker would have theoretically worked better, but the 16-ohm drivers I tried didn't sound as good. So I opted for what sounded better to me.

A much greater challenge was meeting my secondary priority - that the speakers still sound good with a solid state amp. It took me a very long time to get the impedance curves smooth enough that there wasn't a significant tonal balance difference depending on which amp I used. Easy to smooth the impedance curves, but hard to do so without screwing something else up. And in the end I'd still say that optimium bass tuning with the solid state amp is a few Hz higher than with the high output impedance tube amp because I left the bass impedance peaks intact (didn't try to smooth them by overstuffing the cabinet). To accomodate both amp types (as well as variations in room boundary reinforcement) I went with a port system that is somewhat user-adjustable.

Tvad, PHY and Lowther both make full-range drivers that have a nominal impedance of 16 ohms, and I don't think they dip below 12 ohms.

Let me mention two other speaker lines with models that work well with SET and OTL amps: Silverline and Reference 3a.

The Silverline Sonatina III, Bolero and Panatina II don't have particularly smooth impedance curves, but with a solid state amp their frequency response curves dip where their impedance curves peak. So with a high output impedance tube amp, their frequency response will be smoother than with a solid state amp.

The Reference 3a DeCapo has a very smooth impedance curve, varying between about 6 and 11 ohms above the bass region. And, the 11 ohm maximum is in the region where there's a frequency response dip with a solid state amp, once again helping to smooth the frequency response with an OTL or SET tube amp.

Duke
Duke notes:
It took me a very long time to get the impedance curves smooth enough that there wasn't a significant tonal balance difference depending on which amp I used. Easy to smooth the impedance curves, but hard to do so without screwing something else up
Indeed it is! How did you go about it --if I'm not asking a sensitive question? Cheers
Duke: I don't need to tell you or anyone else that has truly dug deeply into designing / building a great speaker that the amount of work / R & D ( research & development ) that one can put into such a project can be mind-boggling. The things that make an audible difference are too high to count, let alone factoring in how to manipulate exactly which "mods" or "tweaks" to use in conjunction with others. Obviously, there are a LOT of design variables and personal decisions to be made when arriving at the final product. Even then, with most DIY speakers, that final product is typically NOT "final" by any means.

Having said that, it amazes me at what some of these manufacturers produce, market and settle for at the prices that they charge. Same thing goes for Pro Sound reinforcement and guitar / bass cabinets. These are typically low to medium grade drivers stuffed into a poorly built and designed box using whatever low grade wiring and hardware that they can find. Sean
>
* For those that can't do the math, an output impedance of .2 ohm would produce a damping factor of 40 as referenced to an 8 ohm speaker. This would be an acceptable starting point for someone trying to drive a larger woofer with a decent sized motor structure. Smaller diameter woofers with smaller motors and / or limited excursion might get away with a slightly lower DF ( damping factor ) without any really noticeable problems.

Much earlier in this thread I suggested 80 as an "ideal" damping factor or 0.1 Ohm output impedance as a good number to seek for a nominal 8 Ohm speaker load (not too much negative feedback and not too lacking in linearity/control when coupled with a speaker).

I can also live with Sean's very close suggestion above. I think, at least for once, we are reaching a consensus on your question Tvad; you have your "Goldilock's" answer as to what may be considered too low, too high and "just right" for amplifier output impedance in relation to load.

Of course, I hope everyone understands that this is a huge generalization that applies to SS amps and I would never recommend choosing one component over another based on this criteria alone.