Sean, I recently spent several weeks designing two loudspeakers specifically to work well with high output impedance tube amps. I wanted them to also work well with low output impedance solid state amps, though that was a secondary priority.
Getting the speakers to work well with a high output impedance amp was not difficult as long as I kept the speaker's input impedance about 15% higher than the amplifier's output impedance. Now granted a higher impedance speaker would have theoretically worked better, but the 16-ohm drivers I tried didn't sound as good. So I opted for what sounded better to me.
A much greater challenge was meeting my secondary priority - that the speakers still sound good with a solid state amp. It took me a very long time to get the impedance curves smooth enough that there wasn't a significant tonal balance difference depending on which amp I used. Easy to smooth the impedance curves, but hard to do so without screwing something else up. And in the end I'd still say that optimium bass tuning with the solid state amp is a few Hz higher than with the high output impedance tube amp because I left the bass impedance peaks intact (didn't try to smooth them by overstuffing the cabinet). To accomodate both amp types (as well as variations in room boundary reinforcement) I went with a port system that is somewhat user-adjustable.
Tvad, PHY and Lowther both make full-range drivers that have a nominal impedance of 16 ohms, and I don't think they dip below 12 ohms.
Let me mention two other speaker lines with models that work well with SET and OTL amps: Silverline and Reference 3a.
The Silverline Sonatina III, Bolero and Panatina II don't have particularly smooth impedance curves, but with a solid state amp their frequency response curves dip where their impedance curves peak. So with a high output impedance tube amp, their frequency response will be smoother than with a solid state amp.
The Reference 3a DeCapo has a very smooth impedance curve, varying between about 6 and 11 ohms above the bass region. And, the 11 ohm maximum is in the region where there's a frequency response dip with a solid state amp, once again helping to smooth the frequency response with an OTL or SET tube amp.
Duke
Getting the speakers to work well with a high output impedance amp was not difficult as long as I kept the speaker's input impedance about 15% higher than the amplifier's output impedance. Now granted a higher impedance speaker would have theoretically worked better, but the 16-ohm drivers I tried didn't sound as good. So I opted for what sounded better to me.
A much greater challenge was meeting my secondary priority - that the speakers still sound good with a solid state amp. It took me a very long time to get the impedance curves smooth enough that there wasn't a significant tonal balance difference depending on which amp I used. Easy to smooth the impedance curves, but hard to do so without screwing something else up. And in the end I'd still say that optimium bass tuning with the solid state amp is a few Hz higher than with the high output impedance tube amp because I left the bass impedance peaks intact (didn't try to smooth them by overstuffing the cabinet). To accomodate both amp types (as well as variations in room boundary reinforcement) I went with a port system that is somewhat user-adjustable.
Tvad, PHY and Lowther both make full-range drivers that have a nominal impedance of 16 ohms, and I don't think they dip below 12 ohms.
Let me mention two other speaker lines with models that work well with SET and OTL amps: Silverline and Reference 3a.
The Silverline Sonatina III, Bolero and Panatina II don't have particularly smooth impedance curves, but with a solid state amp their frequency response curves dip where their impedance curves peak. So with a high output impedance tube amp, their frequency response will be smoother than with a solid state amp.
The Reference 3a DeCapo has a very smooth impedance curve, varying between about 6 and 11 ohms above the bass region. And, the 11 ohm maximum is in the region where there's a frequency response dip with a solid state amp, once again helping to smooth the frequency response with an OTL or SET tube amp.
Duke

