Kijanki: What you wrote is not exactly correct nor complete. The conduction current spikes you mention do exist in the manner you describe, however your analysis is not complete.
First, the conduction spikes caused by diode action you describe are well known and are published in every engineering textbook that discusses converting AC Mains power to unregulated DC voltage. I am pretty certain the first engineer to build a circuit which did this was in the mid or early 1800's, long before DeForrest invented the triode vacuum tube in 1906, I think it was.
Don't think for an instant that switching noise spikes don't exist in a SMPS, they do and are larger in magnitude than in a linear PS. They are, however, quite different in nature in a SMPS than in a linear PS. In addition to this, you also have noise from the clock frequency to deal with. There are SMPS out there with clock frequencies at 1MHz and higher, although I believe most SMPS run in the 100KHz-ish range.
The method to eliminate radiated noise caused by the current spikes in a transformer, whether SMP or linear power, are the same and is not difficult nor impossible to do. It does add cost however, and that is the key.
In addition, the frequency of operation also comes into play: the higher the frequency the smaller the size of transformer for a given power output. However, higher frequency does not mean lower radiated noise. What it does mean is that the transformer is smaller and thus the shielding can be smaller, meaning lower cost. SMPS's are also significantly less expensive than linear power supplies for a given power. They are also much more complex. Note that the stability requirements for a SMPS are the same as for a linear, regulated supply as both involve loop feedback.
The first approach to remove radiated transformer noise, which is probably the most common, is to design in a Faraday shield in the transformer. A transformer using a torrid design is a better and more expensive approach.
Second, a Faraday can could be placed around the transformer and depending on how much money you want to throw at it, you can make it out of iron, copper, iron and copper, or mu-metal.
Third, you can remove the transformer from the chassis and place it in another chassis several feet away from the sensitive electronics. Certainly this has been done numerous times in high end audio equipment. Fourth, you can use a combination of these approaches, not to mention this is not an exhaustive list. For example, I did not mention the quality of the transformer design.
If you want to remove the current spikes caused by the full wave diode bridge circuit in front of a huge capacitive input filter for a large power amplifier, the best way is to eliminate the capacitor based filter which causes the current pulses.
Instead, design a PI based filter where the series inductor is designed to handle the worst case current the amplifier is expected to deliver. In this case, the current spikes which occur become nothing more than 60 Hz sine waves where the magnitude of the current is about what the power supply is delivering.
Don't misunderstand me, this is still an unregulated raw supply. To complete regulation, you still have to add a linear regulator on the output, which is effectively adding another amplifier in series with the signal amplifier. A SMPS does exactly this, as the SMPS is effectively another amplifier whose output is DC.
I am sure you can see that a SMPS power supply is less expensive than the standard regulation circuit just described. Just as there is no question a SMPS is less expensive, there is also no question a SMPS is more noisy and that noise has to be dealt with.
Note one can use all the noise killing techniques described above, including putting the PS in another chassis, and then using a regulated SMPS as well to reduces the cost over a linear supply.
This is indeed a less expensive approach, but it is still more expensive than using a full wave, capacitive based, raw supply which is why this is still the most common approach in linear power amplifiers. Since the amplifier has inherent power supply noise rejection, and the 120 Hz ripple left over in the output voltage is well within the feedback loop bandwidth, I am sure you can see why this is such a popular approach.
There is no question, at least in my mind, that there are better sounding approaches to power supply design in power amplifiers than an unregulated raw supply, it doesn't change the fact it is still a popular approach.
First, the conduction spikes caused by diode action you describe are well known and are published in every engineering textbook that discusses converting AC Mains power to unregulated DC voltage. I am pretty certain the first engineer to build a circuit which did this was in the mid or early 1800's, long before DeForrest invented the triode vacuum tube in 1906, I think it was.
Don't think for an instant that switching noise spikes don't exist in a SMPS, they do and are larger in magnitude than in a linear PS. They are, however, quite different in nature in a SMPS than in a linear PS. In addition to this, you also have noise from the clock frequency to deal with. There are SMPS out there with clock frequencies at 1MHz and higher, although I believe most SMPS run in the 100KHz-ish range.
The method to eliminate radiated noise caused by the current spikes in a transformer, whether SMP or linear power, are the same and is not difficult nor impossible to do. It does add cost however, and that is the key.
In addition, the frequency of operation also comes into play: the higher the frequency the smaller the size of transformer for a given power output. However, higher frequency does not mean lower radiated noise. What it does mean is that the transformer is smaller and thus the shielding can be smaller, meaning lower cost. SMPS's are also significantly less expensive than linear power supplies for a given power. They are also much more complex. Note that the stability requirements for a SMPS are the same as for a linear, regulated supply as both involve loop feedback.
The first approach to remove radiated transformer noise, which is probably the most common, is to design in a Faraday shield in the transformer. A transformer using a torrid design is a better and more expensive approach.
Second, a Faraday can could be placed around the transformer and depending on how much money you want to throw at it, you can make it out of iron, copper, iron and copper, or mu-metal.
Third, you can remove the transformer from the chassis and place it in another chassis several feet away from the sensitive electronics. Certainly this has been done numerous times in high end audio equipment. Fourth, you can use a combination of these approaches, not to mention this is not an exhaustive list. For example, I did not mention the quality of the transformer design.
If you want to remove the current spikes caused by the full wave diode bridge circuit in front of a huge capacitive input filter for a large power amplifier, the best way is to eliminate the capacitor based filter which causes the current pulses.
Instead, design a PI based filter where the series inductor is designed to handle the worst case current the amplifier is expected to deliver. In this case, the current spikes which occur become nothing more than 60 Hz sine waves where the magnitude of the current is about what the power supply is delivering.
Don't misunderstand me, this is still an unregulated raw supply. To complete regulation, you still have to add a linear regulator on the output, which is effectively adding another amplifier in series with the signal amplifier. A SMPS does exactly this, as the SMPS is effectively another amplifier whose output is DC.
I am sure you can see that a SMPS power supply is less expensive than the standard regulation circuit just described. Just as there is no question a SMPS is less expensive, there is also no question a SMPS is more noisy and that noise has to be dealt with.
Note one can use all the noise killing techniques described above, including putting the PS in another chassis, and then using a regulated SMPS as well to reduces the cost over a linear supply.
This is indeed a less expensive approach, but it is still more expensive than using a full wave, capacitive based, raw supply which is why this is still the most common approach in linear power amplifiers. Since the amplifier has inherent power supply noise rejection, and the 120 Hz ripple left over in the output voltage is well within the feedback loop bandwidth, I am sure you can see why this is such a popular approach.
There is no question, at least in my mind, that there are better sounding approaches to power supply design in power amplifiers than an unregulated raw supply, it doesn't change the fact it is still a popular approach.

