cable dielectric cause of artificial sound


Hi folks, I would like to know what your opinion is about the following issue. About 90% of high-end cable manufacturers use PTFE as dielectric. Many of their cables sound much alike and they have a few of these characteristics in common: clean, relaxed and laid back sound but at the same time very dynamic (though a bit artificially), very quiet ("black background"), very good (also artificially) left/right separation. But I think albeit these traits, they tend to sound "technicolored", "sterile" and unengaging (lacking PRaT also). Some cable manufacturers are using bleached cotton as dielectric. These cables sound different: they have more natural dynamics, a mellower sound, more intimate soundstage, more tonal colors and so on. Are these differences mainly due to the dielectric material used? Why is for so many manufacturers PTFE still the ultimate dielectric for the use in audio cables?

Chris
dazzdax
Dpac,

Since you seem to be into math and proofs I suggust you read this.

http://www.st-andrews.ac.uk/~jcgl/Scots_Guide/audio/skineffect/page1.html

I was going to stay out of this thread after my initial post but it appears that like Sean said one must think outside the box.

Remember there are 3 basic theories electron flow, hole flow and transfer of potential. Which of these theories applies depends on when and where you went to school.

You need to read my previous post and the link. And as for credentials mine are not as impressive as some others on this site. 7.5 years as a Navy electronic technican. Schooling is the equivelant of an AS EE degree. 7.5 years as a digital switch design engineer.

Dpac electronics is PFM period. As an example there was a 100 Mhz reference oscilator in a spectram analizer providing 200 Mhz out of the calibration output. With 4 amplifer stages off of the oscilator. The analizer worked fine in all respects. The problem was a cracked base biasing resistor for the 4 amplifer stages which was in the crystal oscilator circuit. If you can tell me why I might give you knowledge some creedence. Because I already know why and it is not PFM.
Artizen65

crystal oscillator flexed under external voltage causing enough mechanical stress to compromise circuit elements.

200 MHz was generated by electronic chain multiple of crystal or double balanced mixer of sorts and a filter.

PFM? Pulsed frequency modulation?
Tplavas, of all the dialogue here, yours seems most intriguing. If you would be so kind, could you describe your experiences and/or opinions on the various geometries, and their impact on sonics, etc., please?

Thank you!
Joe
All my cables are now dielectric free......well except the power cables. But they have a lot of cotton between the cable and dielectric. My interconnects ansd speaker wire and my rewire inside my speaker boxes are all enamel coated solid wire. Best image I have ever heard anywhere.

ET
Hi ET,

I wanted to post these comments, but please understand my motive is to educate, not criticize. Your “magnet wire” setup is simple in design and no doubt sounds cleaner without the shielding in most cable designs. It is not however because you have no dielectric, in fact the enamel coating on the wire you are using has a relatively high dielectric constant of 5.1. A bare wire in a vacuum would be a 1.0 and bare wire in air would be slightly higher. Cotton and dry paper have fairly low dielectric constants of 1.3 and 2.0 respectively.

The problem with copper wire in air, cotton or paper is corrosion and oxidation. Cotton and paper will both retain moisture in a humid climate and actually speed up the oxidation process. This is where poly___ something and Teflon become so useful, but as discussed here, they carry a sonic signature with them. The solution of enamel coated copper wire seems so logical, but in fact it is not a great dielectric at all.

Dielectric constant is a measure of the charge retention capacity of a medium. In general, low dielectric constants (i.e., cotton @ 1.3-1.4) result in a "fast" substrate while large dielectric constants (i.e., Alumina @ 10.0) result in a "slow" substrate. What this has to do with our audio industry is obvious. The lower the dielectric the less energy retention and the easier the signal is carried.

For this reason copper in inherently limiting if we want to use low dielectric materials to isolate wires. In this respect a super thin poly__ something would actually be a better choice than enamel. The issue then becomes finding a super thin covering on copper wire. This is not as easy as one might think, but there are thin tubing that can be shrink wrapped to a bare wire that may prove to be an excellent choice over enamel.

So I suspect the real reason you are happy with the sound of your system is two fold, first the fact that the wires are allowed to be free of added materials like shielding fillers and sleeving leaves a cleaner signal. The high dielectric constant you have may actually have some benefit by being “slowed” making the treble less aggressive, thus less bright.

jd